Practical Computer Forensics using Open Source tools

Bruce Nikkel
June 12, 2008
Presentation Summary

- Overview of Digital Forensics
- Overview of Open Source Computer Forensic Tools
- Practical Examples
- Resources and Q&A
What is Digital Forensics?

- The collection, preservation, analysis, and presentation of digital evidence...
- Admissible in a court of law
- Usable for employee disciplinary hearings
- Supporting data for internal incidents
- Assisting/furthering other investigations
Field of Digital Forensics

- Computer forensics (hard disk, removable media acquisition and analysis)***
- Network forensics (network intrusions, abuse, etc.)
- Software forensics (examining malicious code, malware, etc.)
- Live system forensics (compromised hosts, system abuse, etc.)
Digital Evidence is Data that...

- Helps reconstruct past events or activity (timelines)
- Shows possession/handling of digital data
- Show use/abuse of IT infrastructure & services
- Shows evidence of policy violation or illegal activity
Difficulties of Digital Evidence

Easy to destroy
- starting a PC updates hundreds of timestamps and modifies many files
- attaching a hard disk or USB stick will modify file system timestamps
- volatile memory is lost when a machine is powered off

Hard to get
- network traffic only exists on the wire for milliseconds
- intrusions and attacks may be cleverly devised
- anti-forensic activity may prevent collection
Overview of Open Source Computer Forensic Tools

- disk acquisition/imaging, and forensic image formats
- disk and file system analysis
- unallocated blocks, deleted files, slack-space recovery
- data carving
- “known good” hash databases
dcfldd

- Developed by U.S. Dept. of Defense Forensics Lab
- based on traditional Unix dd, but rewritten with forensics in mind
- cryptographic hashing for evidence preservation, error handling, logging, splitting, verification
- used for “forensically sound” disk acquisition
sleuthkit forensic suite

Developed by Brian Carrier, based on original Coroner’s Toolkit (TCT) by Farmer and Venema

A set of analysis tools for getting info about:

- disk layouts, partition tables (DOS, BSD, Sun, GPT)
- filesystems, files, directories
- timestamps and filesystem timelines
- deleted files, unallocated areas, slack-space
foremost

- Developed by Jesse Kornblum and Kris Kendall (U.S. Air Force Office of Special Investigations), based on scapel

- "data carving" forensic tool, attempts to extract files from unstructured data

- Uses analysis of headers, footers, and known file formats

- Useful for corrupt disks, swap, memory dumps, network traffic, or any "blob" of unknown data
Autopsy

- A side project of Sleuthkit, developed by Brian Carrier
- Web-based front-end for:
 - basic case management
 - analysis using sleuthkit tools
PyFlag

FLAG (Forensic and Log Analysis GUI)

Web GUI interface, and set of command line tools

Analysis of:

- disk devices and disk images
- captured network traffic (pcap)
- logs
NSRL Databases

- National Software Reference Library, maintained by NIST
- a database of hashes identifying files from known software packages
- Used to filter out “known good” files
Afflib and tools

- Forensic image format and aff tools, developed by Simson Garfinkel
- Intended to be an open, peer-reviewed, vendor independent standard
- Allows the direct working with compressed files (i.e., allows seeking)
- Sleuthkit is compatible with AFF
- Hold other meta data about the image and case
Examples... disk acquisition

- taking an md5 hash during acquisition

 `dcfldd hash=md5 if=/dev/hda of=image.dd`

- taking an sha1 hash of every 1Gb of the disk

 `dcfldd hash=sha1 hashwindow=1G if=/dev/hda of=image.dd`

- verify a disk against an image:

 `dcfldd vf=/home/bruce/image.dd if=/dev/sdg`
Disk layout, partition table info

mmls displays disk layout and partition scheme

```bash
# mmls /dev/sda
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

<table>
<thead>
<tr>
<th>Slot</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:</td>
<td>-----</td>
<td>0000000000</td>
<td>0000000000</td>
<td>Primary Table (#0)</td>
</tr>
<tr>
<td>01:</td>
<td>-----</td>
<td>0000000001</td>
<td>0000000062</td>
<td>Unallocated</td>
</tr>
<tr>
<td>02:</td>
<td>00:00</td>
<td>0000000063</td>
<td>0034298774</td>
<td>Linux (0x83)</td>
</tr>
<tr>
<td>03:</td>
<td>00:01</td>
<td>0034298775</td>
<td>0035873144</td>
<td>DOS Extended (0x05)</td>
</tr>
<tr>
<td>04:</td>
<td>-----</td>
<td>0034298775</td>
<td>0034298775</td>
<td>Extended Table (#1)</td>
</tr>
<tr>
<td>05:</td>
<td>-----</td>
<td>0034298776</td>
<td>0034298837</td>
<td>Unallocated</td>
</tr>
<tr>
<td>06:</td>
<td>01:00</td>
<td>0034298838</td>
<td>0035873144</td>
<td>Linux Swap / Solaris x86 (0x82)</td>
</tr>
<tr>
<td>07:</td>
<td>-----</td>
<td>0035873145</td>
<td>0035888129</td>
<td>Unallocated</td>
</tr>
</tbody>
</table>
```
File system info

fstat displays much info about the filesystem

```bash
# fsstat /dev/sda1

FILE SYSTEM INFORMATION
--------------------------------------------
File System Type: Ext3
Volume Name:
Volume ID: 3d6c8a6fef240a9dc04def540921d90c

Last Written at: Mon Jun  9 22:00:08 2008
Last Checked at: Mon May 26 01:22:32 2008
Last Mounted at: Mon Jun  9 22:00:08 2008
Unmounted properly
Last mounted on:
Source OS: Linux
Dynamic Structure
Compat Features: Journal, Ext Attributes, Resize Inode, Dir Index
InCompat Features: Filetype, Needs Recovery,
Read Only Compat Features: Sparse Super, Has Large Files,

Journal ID: 00
Journal Inode: 8
```
file system info (cont.)

METADATA INFORMATION
--
Inode Range: 1 - 1073152
Root Directory: 2
Free Inodes: 889080
Orphan Inodes: 855140, 852843, 852841, 460954, 329085, 856376, 856660, 856659, 856658, 856657, 856654, 856653, 856652, 881066, 499732,

CONTENT INFORMATION
--
Block Range: 0 - 4287338
Block Size: 4096
Free Blocks: 3256977

BLOCK GROUP INFORMATION
--
Number of Block Groups: 131
Inodes per group: 8192
Blocks per group: 32768

Group: 0:
Inode Range: 1 - 8192
Block Range: 0 - 32767
Layout:
 - Super Block: 0 - 0
 - Group Descriptor Table: 1 - 2
 - Data bitmap: 1025 - 1025
 - Inode bitmap: 1026 - 1026
 - Inode Table: 1027 - 1282
 - Data Blocks: 1283 - 32767
Free Inodes: 8181 (99%)
Free Blocks: 0 (0%)
Total Directories: 2
File and directory analysis

Listing all files: (recursive and full path):

`fls -r -p partition.dd`

Listing just deleted files, or just regular files:

`fls -r -p -d partition.dd`
`fls -r -p -u partition.dd`

Listing just directories or just files:

`fls -D`
`fls -F`

Get more/long info (file_type inode file_name mod_time acc_time cre_time size uid gid) with `-l`
File and directory analysis

Sample output (default and long):

- `d/d 817861:`
 var/lib/apt/mirrors
- `d/d 817878:`
 var/lib/apt/mirrors/partial
- `d/d 817862:`
 var/lib/apt/periodic
- `r/r 817865:`
 var/lib/apt/periodic/update-stamp
- `r/r * 817899(realloc):`
 var/lib/apt/extended_states.tmp

<table>
<thead>
<tr>
<th>Directory</th>
<th>Last Access</th>
<th>Creation</th>
<th>Size</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmp/dirl</td>
<td>2008.06.12</td>
<td>2008.06.12</td>
<td>4096</td>
<td>1000 1000</td>
</tr>
<tr>
<td>tmp/dir2</td>
<td>2008.06.12</td>
<td>2008.06.12</td>
<td>0</td>
<td>1000 1000</td>
</tr>
<tr>
<td>tmp/file1.txt</td>
<td>2008.06.12</td>
<td>2008.06.12</td>
<td>406</td>
<td>1000 1000</td>
</tr>
<tr>
<td>tmp/file2.txt</td>
<td>2008.06.12</td>
<td>2008.06.12</td>
<td>463</td>
<td>0</td>
</tr>
</tbody>
</table>
Recovery of deleted files

- locate file from the fls output, get inode number

- extracting file from the inode:

 \[\text{icat } -o \text{ 4193280 image.dd 700740 > filename}\]

- This could be a normal file or a deleted file

- "-s" includes the slackspace of the file
Recovery of (un)allocated and slack space

- extracting allocated space:
  ```
  dls -a partition.dd > alloc.dls
  ```

- extracting unallocated space:
  ```
  dls -A partition.dd > unalloc.dls
  ```

- extracting slack space:
  ```
  dls -s partition.dd > slack.dls
  ```

- readable output: “-a” ascii or “-h” hex, add “-w” to view them as html
  ```
  dcat -h image.dd 5436
  ```

- Use dcalc to map extracted data back to the image
Filesystem timelines

mactime creates a log style timeline of each timestamp on each file

use fls with the -m flag to prepare data for mactime (a prefix directory must also be specified)

can be piped from fls directly into mactime:
fls -r -m /partition.dd | mactime -b -

Just show a certain date range:

mactime -b timeline.data 01/21/2004-01/27/2004
Example mactime output:

Wed Jun 11 2008 23:32:53 4096 m.c d/drwxr-xr-x 0 0 409601 /media
12288 m.c d/drwxr-xr-x 0 0 458753 /etc
Wed Jun 11 2008 23:54:20 4096 m.c d/drwxrwxrwt 0 0 499713 /tmp
Thu Jun 12 2008 00:44:30 4096 .a. d/drwxrwxrwt 0 0 499713 /tmp
 4096 m.c d/drwxr-xr-x 0 0 335873 /root
Thu Jun 12 2008 00:44:47 142 mac --/rw-r--r-- 0 0 27894 /document.txt
Thu Jun 12 2008 00:44:56 0 .a. --/rw-r--r-- 0 0 27895 /test (deleted)
Thu Jun 12 2008 00:45:02 33 .a. l/irwxrwxrwx 0 0 27448 /initrd.img.old
Carving unstructured data

- List possible files for extraction in an image:

 `foremost -wv -i image.dd`

- Extract all known files in an image, and save to a sorted directory:

 `foremost -t all -i image.dd`

- Extract all jpegs:

 `foremost -t jpeg -i image.dd`
NSRL Database samples

NSRL Database format, one line for each file:

"001A5E31B73C8FA39EFC67179C7D5FA5210F32D8","49A2465EDC058C975C0546E7DA07CEE","E93AF649","CNN01B9X.GPD",83533,8762,"Vista",""

"000C89BD70552E6C782A4754536778B027764E14","0D3DD34D8302ADE18EC8152A32A4D934","7A810F52","gnome-print-devel-0.25-9.i386.rpm",244527,2317,"Linux",""

"001A6684A98A452F8501CD6F2D4A287A8FD5B709","F6F49036001D752F6F378247D911018D","7C46DD00","AppleTalk.h",78184,2490,"MacOSX10.2",""

"0067CB46B52B6ABEB5FC6362D7B4791021537C46","DA23D20200F82E94AECDAA4D37F169D6","096FE2DC","NETWATCH.EX_",16869,524,"WIN311",""
Resources

Web resources
- www.e-evidence.info, a directory of digital forensics documentation and papers
- www.forensicswiki.org, a Wikipedia style forensics website
- www.forensicfocus.com, an online forensics community

Books
- File System Forensic Analysis, Brian Carrier
- Forensic Discovery, Dan Farmer, Wietse Venema

Peer reviewed practitioner/research journals
- International Journal of Digital Evidence (IJDE)
Questions? Comments?

Questions or comments?
Contact me at nikkel@digitalforensics.ch
Slides available at www.digitalforensics.ch